상세정보
데이터가 뛰어노는 AI 놀이터, 캐글
- 저자
- 가도와키 다이스케
- 출판사
- 한빛미디어
- 출판일
- 2021-05-10
- 등록일
- 2021-07-29
- 파일포맷
- EPUB
- 파일크기
- 10MB
- 공급사
- 교보문고
- 지원기기
-
PC
PHONE
TABLET
프로그램 수동설치
뷰어프로그램 설치 안내
책소개
데이터 분석 무한 경쟁 ‘캐글’에서 살아남기 위한 비결
세계 최대 규모 데이터 분석 경진 대회 플랫폼인 캐글에서는 일반적이지 않은 데이터 처리 기법이 많이 활용된다. 이를 이해하고 체득하여 활용하는 것은 대회뿐만 아니라 데이터 분석 실무에서도 모델 정확도를 높이는 데 매우 유용하다. 특징(feature)을 만드는 방법, 앙상블, 평가지표, 사이킷런, xgboost 등 기존에는 잘 다루지 않았던 기법과 사례를 이 책 한 권에 정리했다. 경진 대회에 참여할 계획이 있거나, 캐글을 경험해봤지만 더 높은 상위 랭킹에 도전하고 싶다면 지금 바로 읽어보기를 권한다.
저자소개
저자 : 가도와키 다이스케
저자 : 가도와키 다이스케
Kaggle Competitions Master. 교토대학 졸업 후 생명보험회사에서 보험계리사로 10년간 상품 개발과 리스크 관리 업무에 종사했습니다. 캐글과의 만남을 계기로 경력을 내던지고 캐글 및 데이터 관련 프로그램에 참여 중입니다. 캐글 Walmart Recruiting II: Sales in Stormy Weather 대회에서 우승했으며 캐글 Coupon Purchase Prediction 대회에서 3위 입상했습니다.
저자 : 사카타 류지
Kaggle Competitions Grand Master. 교토대학 대학원 수료 후 전기 제조업체에 입사하여 데이터 과학자 및 연구원으로 종사했습니다. 2014년부터 데이터 과학과 머신러닝에 흥미가 생겨 캐글을 시작했습니다.
저자 : 호사카 게이스케
Kaggle Competitions Expert. 도쿄대학 대학원에서 천체 시뮬레이션 연구로 석사 학위를 받았습니다. 데이터 분석 컨설팅 회사에서 10년간 기업의 데이터 분석 지원 업무를 담당했습니다. 이후 대기업 웹서비스 부문에 입사하여 데이터 활용 업무에 종사했습니다. 현재 데이터 과학자 및 머신러닝 엔지니어의 육성과 관리를 맡고 있으며 개인적으로는 육아에 전념 중입니다.
저자 : 히라마쓰 유지
Kaggle Competitions Master. 도쿄대학 대학원에서 물리학을 전공하고 전기 분야 대기업에 입사했습니다. 이후 금융업계로 이직하여 금융시스템 회사의 파생상품 업무와 대형 손해보험 그룹의 위험회계 업무에 종사했습니다. 현재는 AXA 생명보험의 시니어 데이터 과학자로서 내부 데이터 분석 업무를 담당하고 도쿄대학에 연구원으로 파견되어 의료 데이터를 분석하고 연구합니다. 캐글은 2016년부터 본격적으로 시작했습니다. 곰 인형을 매우 좋아합니다.
역자 : 대니얼WJ
졸업 후 과감히 해외 취업에 도전했고 일본과 미국의 IT 업계에서 8년간 근무했습니다. 통신사 엔지니어로 일하다가 회사를 그만두고 또다시 새로운 도전으로 교육에 몸담은 지 벌써 5년이 흘렀습니다. 작은 컴퓨터 학원에서 초중고 학생들에게 코딩을 가르치며 내디딘 한걸음을 시작으로 빅데이터 강사를 거쳐 대학원, 대기업, 정부기관 대상으로 강의도 하며 지금까지 왔습니다. 현재는 한 기업의 팀장으로 그리고 빅데이터와 AI 분야 프리랜서 번역가 및 강사로 활동 중입니다. 앞으로는 누군가에게 꿈과 소망을 전달하는 크리스천으로서 작가, 번역가, 교육가로 그리고 한 명의 캐글러로 발걸음을 옮겨봅니다.
목차
CHAPTER 1 경진 대회
1.1 경진 대회란?
1.2 경진 대회 플랫폼
1.3 경진 대회 참가부터 종료까지
1.4 경진 대회의 참가 의미
1.5 상위권 진입의 중요 팁
CHAPTER 2 경진 대회의 평가지표
2.1 경진 대회의 종류
2.2 경진 대회의 데이터셋
2.3 평가지표
2.4 평가지표와 목적함수
2.5 평가지표의 최적화
2.6 평가지표 최적화 사례
2.7 데이터 정보 누출
CHAPTER 3 특징 생성
3.1 이 장의 구성
3.2 모델과 특징
3.3 결측값 처리
3.4 수치형 변수 변환
3.5 범주형 변수 변환
3.6 날짜 및 시간변수 변환
3.7 변수의 조합
3.8 다른 정형 데이터와의 결합
3.9 집약하여 통계량 구하기
3.10 시계열 데이터 처리
3.11 차원축소와 비지도 학습의 특징
3.12 기타 기법
3.13 경진 대회의 특징 사례
CHAPTER 4 모델 구축
4.1 모델의 기본 이해
4.2 경진 대회에서 사용하는 모델
4.3 GBDT
4.4 신경망
4.5 선형 모델
4.6 기타 모델
4.7 모델의 기타 팁과 테크닉
CHAPTER 5 모델 평가
5.1 모델 평가란?
5.2 검증 방법
5.3 시계열 데이터의 검증 방법
5.4 검증 포인트와 기술
CHAPTER 6 모델 튜닝
6.1 매개변수 튜닝
6.2 특징 선택과 중요도
6.3 편중된 클래스 분포의 대응
CHAPTER 7 앙상블 기법
7.1 앙상블이란?
7.2 간단한 앙상블 기법
7.3 스태킹
7.4 앙상블 대상 모델의 선택 기준
7.5 경진 대회의 앙상블 사례